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Abstract  Social action is situated in fields that are simultaneously composed of in-
terpersonal ties and relations among organizations, which are both usefully characterized 
as social networks. We introduce a novel approach to distinguishing different network 
macro-structures in terms of cohesive subsets and their overlaps. We develop a vocabu-
lary that relates different forms of network cohesion to field properties as opposed to or-
ganizational constraints on ties and structures. We illustrate differences in probabilistic 
attachment processes in network evolution that link on the one hand to organizational 
constraints versus field properties and to cohesive network topologies on the other. This 
allows us to identify a set of important new micro-macro linkages between local behavior 
in networks and global network properties. The analytic strategy thus puts in place a 
methodology for Predictive Social Cohesion theory to be developed and tested in the con-
text of informal and formal organizations and organizational fields. We also show how 
organizations and fields combine at different scales of cohesive depth and cohesive 
breadth. Operational measures and results are illustrated for three organizational exam-
ples, and analysis of these cases suggests that different structures of cohesive subsets and 
overlaps may be predictive in organizational contexts and similarly for the larger fields in 
which they are embedded and for predictions of feedback from the field context back to 
organizations.   

Keywords  Social cohesion, complex networks, organizational fields, scaling and at-
tachment, micro-macro linkages.



1. Introduction  

Although many authors employ 
metaphors that highlight transitions from 
networks to organizations, such distinc-
tions can miss the point that organizations 
are composed of networks. These net-
works operate at multiple levels within 
and across organizations, and include 
networks of ideas and classifications, 
networks of overlapping groups, interper-
sonal networks, contractual networks, or 
production chains (to list but a few). The 
idea that organizations emerge within so-
cial fields constituted by networks is also 
conveyed by metaphors such as “net-
works into organizations” or “markets 
from networks” (White 2002). A little-
considered implication of the latter con-
ceptions of organizational emergence is 
the possibility that purely relational data 
may embody some of the distinctive fea-
tures of organizations and fields. In prin-
ciple, observations on network ties may 
provide a route for the a priori identifica-
tion of organizations and fields.  

Organizational theory has embraced 
network concepts but in a potentially lim-
iting manner. Our aim here is to situate 
network ideas, particularly those on social 
embeddedness, within the wider concept 
of an organizational field (Bourdieu 1992; 
DiMaggio and Powell 1983). This effort 
will help frame the relevance of networks 
to organization theory and create a larger 
frame in which to theorize the interface 
between organizations and their external 
environments. Our core insight is that 
both organizations and fields emerge from 
relational networks, and that different mi-
cro-behavioral or attachment processes, 
once established, structure those networks 
in predictable ways. The structures that 
are predictably emergent in these net-
works react back on behavior in organiza-

tions and fields in a process of continuous 
restructuration that is partly predictable 
but also involves transformations or tran-
sitions that will not appear locally pre-
dictable to network actors. The under-
standing of these dynamical feedbacks 
and tipping points represents a neglected 
area of organizational theory. 

1.1. Organizations and Fields 
Formal organizations are enduring 

structures characterized by legitimate au-
thority relations and mutual rights and ob-
ligations among members (Weber 1968, 
Leaf 2004). These structures coordinate 
production (Chandler 1977), transactions 
(Coase 1937), information flows (March 
and Simon 1958; Stinchcombe 1990), the 
purposes and consent levels of individual 
participants (Barnard 1938; Simon 1947) 
and, we contend, the network connections 
among the people and groups occupying 
them.  

Fields structure inter-organizational 
relations in an equally distinctive fashion. 
Institutional fields are supra-
organizational transactional linkages that 
configure the search and regulation sys-
tems that govern the interpretation and ac-
tions of both organizational and individ-
ual participants through formal precepts 
and monitoring, normative patterns of ac-
tion, and taken-for-granted cognitive 
schemas (Powell and DiMaggio 1991). 
Several theorists have linked a conception 
of fields to ties among diverse participants 
in an activity (Bourdieu 1992, Sewell 
1992). When placed in the context of the 
evolution of inter-organizational net-
works, this conceptualization suggests the 
reciprocally structuring effects of rela-
tional topologies and institutional fields 
(Giddens 1986; Powell 1990).  

We contend that organizations, which 
formally structure relationships among 
individuals and collectivities to achieve 
particular goals, are often characterized 
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In structural terms, organizational 
networks are distinguished by internal ties 
that tend to have more cohesive bounda-
ries as compared to the more extensive 
and less cohesive overall networks that 
include their external ties. The cohesive 
subsets within the organizational bounda-
ries help define differences in their scale, 
power, and relationship to groups of indi-
viduals that occupy and link them. Sys-
tems of ideas, values, and normative roles 
attach to organizations by virtue of rela-
tively stable and cohesive interactions 
among their members. Individuals, how-
ever, will typically belong to multiple or-
ganizations and subgroups within them, 
and to various affinity groups. Thus inter-
personal connections may cross organiza-
tional boundaries in addition to spanning 
internal divisions. If it is partly the cohe-
sion of interactive ties within organiza-
tions that tends to give a highly ordered – 
even if fluidly changeable – structure. It 
must be remembered that organizations 
interact purposefully within changing en-
vironments.  

by differentiated cohesive groups whose 
overlaps can draw disparate units and ac-
tivities closer together. In contrast, fields 
are commonly organized by more integra-
tive, nested, and searchable topologies 
where different levels of cohesive embed-
dings represent both steps on a ladder of 
integration into the field and windows for 
search within it.  

In the following sections, we develop 
these propositions in terms of network 
theories about links between micro-
dynamics of attachments in networks and 
more macro structures of cohesive em-
beddedness before distinguishing differ-
ent network topologies of cohesion and 
offering two propositions about the struc-
tural correlates of organizations and 
fields. Finally, we illustrate our concepts 
and models with research findings from 
informal social events, at one level, pro-
fessional activities (coauthorships) at an-
other and contractual networks in the bio-
technology industry at a third level. These 
collectivities – networks of interacting in-
dividuals, groups of individuals, and net-
works of organizations – bear distinctive 
imprints of both fields and organizations.  

At their simplest, fields are also net-
works of interactions among nodes that 
may be modeled by arcs, edges and nodes 
that change over time. Fields are those 
networks that emerge as structured and 
structuring environments for organiza-
tional and individual participants. To un-
derstand organizational dynamics we 
need to look with equal care to the exter-
nal ties of organizations within those 
changing environments. In short, while 
we treat the network instantiations of or-
ganizations and fields as distinctive for 
the purposes of clarity, a more realistic 
approach asks how intra and inter-
organizational relations interact dynami-
cally to co-constitute coordination 
mechanisms for both organizations and 
fields.  

1.2. Defining Fields and Organiza-
tions as Networks 

To make these propositions more pre-
cise, we must first define fields and or-
ganizations as networks. A network as a 
formal construction is a set of nodes and 
one or more sets of ties. Ties may include 
sets of edges that correspond to unordered 
pairs of nodes or directed edges called 
arcs defined by ordered pairs. We will in-
troduce a formal definition of structural 
cohesion as a property of network struc-
ture (Moody and White 2003) that is di-
rectly measurable and yields powerful 
predictions about the behavior and dy-
namics of networks, organizations and 
fields.  
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2. Theoretical Background  

2.1 Social Embeddedness  

Embeddedness (Granovetter 1985 
1992) is a central concept in economic 
sociology and one of the most commonly 
cited ideas in the networks literature. It 
provides a helpful foundation to our work 
on structural cohesion. Within the context 
of richly differentiated networks, social, 
political, economic, and familial relations 
can provide interlocking configurations of 
multiplex and cohesive support for one 
another. Embeddedness, as formulated by 
Granovetter (1985), is a property of struc-
tures in which actors that are integrated in 
cohesive clusters or multiplex relations of 
social networks face different sets of op-
portunities and constraints than those who 
lack such connections or encumbrances. 
Granovetter (1992: 33) delineates the key 
division between "local" and "structural" 
embeddedness:  

"Embeddedness" refers to the fact 
that economic action and outcomes, 
like all social action and outcomes, 
are affected by actors' dyadic (pair-
wise) relations and by the structure 
of the overall network of relations. 
As a shorthand, I will refer to these 
as the relational and the structural as-
pects of embeddedness. (italics in 
original). 

 

He further specifies (p. 35) his under-
standing of structural embeddedness as 
the degree to which actors are involved in 
cohesive groups:  

[T]o the extent that a dyad's mu-
tual contacts are connected to one 
another, there is more efficient in-
formation spread about what mem-
bers of the pair are doing, and thus 
better ability to shape behavior. Such 
cohesive groups are better not only at 
spreading information, but also at 

generating normative, symbolic, and 
cultural structures that affect our be-
havior.  

 
2.2 From Embeddedness to 
Cohesion 

 
Granovetter’s description of structural 

embeddedness suggests that organiza-
tional theorists' attention should focus on 
identifying cohesive subsets in social 
networks. While the crucial mathematical 
concept for emergent cohesive subsets in 
networks was discovered by Menger 
(1927), a central element missing in most 
social and natural science network studies 
has been an adequate theoretical concep-
tion and measurement of the concept, 
which we term structural cohesion 
(Moody and White 2003). Structural co-
hesion has two distinct but deeply equiva-
lent facets. One is cohesion via k-node-
connectivity: a network is k-connected 
when it is invulnerable to disconnection 
by removal of fewer than k of its mem-
bers. “A group's structural cohesion is 
equal to the minimum number of actors 
who, if removed from the group, would 
disconnect the group” (Moody and White 
2003: 109). More formally (White and 
Harary 2001), a maximal set S with re-
spect to a property P is one for which 
every broader set containing S lacks 
property P, and a k-component is a maxi-
mal subgraph of a graph G that is k-
connected. When we use the term multi-
connectivity we are referring to k-
connected graphs, their k-components, 
and the fact that all nodes in a k-
component are k-connected. 

The other facet that makes member-
ship in k-components an appropriate, 
strong and scalable measure of network 
cohesion is that Menger proved that a 
group with structural cohesion k (mem-
bers of a k-component) has at least k 
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node-independent paths between every 
pair of members, and vice versa. Paths are 
node-independent if they have only the 
start and end nodes in common, so that 
multiconnectivity implies additive 
strength of redundant ties between pairs 
of nodes with a cohesiveness proportional 
to the number of their node-independent 
paths. Because it specifies a formal iden-
tity between a key structural characteristic 
of graphs and a basic property of network 
traversal redundancy, graph theorists re-
gard Menger’s theorems of k-connectivity 
as one of their half-dozen or so most fun-
damental discoveries (Harary 1969; 
Diestel 2002:55). We use the term multi-
connected for a pair of nodes or a graph 
whose k-connectedness is 2 or more. 

The identification of structurally co-
hesive groups and their nesting in a net-
work is deterministic, with a result that 
assigns each node to one or more k-
components (Harary 1969). The k-
components of a graph are partially or-
dered: Any k-component with k > 1 has a 
unik (k-1)-component. In addition to k-
components there are further levels of 
structural embeddedness wherever clus-
ters are separated within a k-component 
after removal of k of its nodes. Moody 
and White (2003) provide a tractable al-
gorithm (also implemented in NetMiner 
2004:15) for enumerating cohesive sets, 
including k-components, by levels of em-
bedding. 

Whether structural cohesion and em-
beddedness matter – their consequences 
and antecedents – has been investigated 
under the rubric of Predictive Social Co-
hesion (PSC) theory, which predicts a 
wide range of consequences. The theo-
retical and empirical implications of this 
formalization for social life were exam-
ined in Moody and White (2003), who 
found it to be successful net of other fac-
tors in predicting school attachment in 

high schools and coordinated political ac-
tion among firms in the Fortune 500. 
Powell, White, Koput and Owen-Smith 
(2004) draw on PSC theory for hypothe-
ses about the formation of contracts in the 
evolution of the biotech industry. Brudner 
and White (1997) use PSC theory to pre-
dict and validate social class membership 
at the community level. Structural cohe-
sion should matter to individuals and 
groups because it scales the linkage of 
specific actors to one another, facilitates 
the flow of information and exchange 
through multiple channels, allows the 
cross-checking of information as a basis 
for establishing reliability and trust, and 
supports the robustness of social groups 
and their adaptive resilience through mul-
ticonnectivity.  

 
2.3 Co-evolution of Organizations 
and Fields as Networks  

 
2.3.1 The effect of micro-dynamics  
How attachments are made in net-

works (micro-dynamics; see also Snijders 
2001 and Robins, Woolcock and Pattison, 
in press) structures network topology 
which in turn alters the opportunity space, 
constraints and perception of network en-
vironments, and thereby reacts back on 
micro-behavior and dynamics. Here we 
put these links in the context of organiza-
tions and fields, then examine probability 
models of micro-dynamics and their vari-
ous effects on network topology. The 
reader wishing to avoid technical detail 
may skip over these probability models, 
but the regularities summarized here form 
the basis for the propositions that follow. 

To illustrate how network dynamics, 
the structure of fields and the behavior of 
actors or organizations co-influence one 
another, we (1) take field structure as the 
larger, ‘macro,’ environment of organiza-
tional and actor (‘micro’) behavior, (2) 
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focus on network dynamics as the key to 
their co-evolution, and (3) develop in-
sights from prior research on the cohesive 
properties of networks. This approach al-
lows us to frame some of the linkages by 
which micro-macro co-evolution pro-
ceeds. Changing patterns of network ties 
congeal into emergent structures and 
these emergent forms shape future tie 
formation in definable ways. Institution-
alized groupings may become more stable 
over time, both at the field (‘macro’) 
level and the organizational or ‘micro’ 
level of actors occupying positions in 
network neighborhoods. As such, a view 
of organizations and fields as simultane-
ously emerging from and shaping the 
networks of relationships reprises 
Coase’s (1937) classic insight that firms 
and markets offer alternate means to co-
ordinate the complex transactions re-
quired for production (see White 2002). 
Organizations and fields, in our view, 
represent complementary mechanisms 
that structure patterns of relations Or-
ganizations are more purposive, author-
ity-driven instrumentalities, while fields 
are looser, with fewer constraints on in-
teraction, and both give and regulate ac-
cess to resources and information external 
to organizations.  

2.3.2. Random, degree-biased and 
mixed graphs. To conceptualize the link 
between network dynamics and topology, 
we begin with three probabilistic models 
of how successive attachments may be 
generated in networks with a fixed num-
ber N of nodes and a growing number m 
of edges. All three are two-stage models 
with a fixed probability P(u) = 1/(N-1) 
that node u will be one of the two nodes 
in a new attachment. They differ in the 
probabilities of u attaching to a second 
node, v≠u. In equiprobable attachment 
(Erdös and Rényi 1961) the attachment 
probability is constant for all v, so that 

PE(v) = 1/(N-1). These are called random 
graphs because a tie between any pair of 
nodes where u≠v is equiprobable. In de-
gree-biased attachment the probability of 
an attachment from u to v is proportional 
to the number of existing links of node vd 
(of degree dv), PD(vd) ~ dv + ε, where 0 < 
ε << 1 serves to start the process from a 
graph with no edges. In mixed attach-
ment, PM(v) ~ dv + A + ε, so that PM(v) ≈ 
PD(v) if A = ε << 1, and PM(v) ≈ PE(v) as 
A goes to infinity (Dorogovtsev and 
Mendes 2003). 

2.3.3. Random graph topologies The 
network topologies of the random graph 
and the degree-biased graph differ mark-
edly. As the number m of edges in an 
equiprobable graph grows, the expected 
topology changes as m goes from 0 to 
N/2 from a graph with small disconnected 
subgraphs that grow linearly in number 
with m to one with a single large compo-
nent that dominates the others in size 
(Erdös and Rényi 1961). The large com-
ponent grows much more rapidly as m 
goes from N/2 edges to N edges, follow-
ing an expected growth curve that is lo-
gistic or S-shaped. By the time that m = 
N, almost all random graphs have a giant 
component that is orders of magnitude 
larger than every other component. As the 
number m of edges grows from N to 2N, 
a further sigmoid transition occurs for the 
growth of the largest bicomponent, which 
almost invariably develops within the gi-
ant component, as Moody (2003:38) 
shows by simulation. As m grows larger, 
successive k-components must form, and 
as they grow large they are almost always 
members of the largest (k-1)-component. 
Thus, this nested form of a single cohe-
sive hierarchy is a characteristic outcome 
even of purely random interaction. This 
has implications for our argument regard-
ing co-evolution of macro-micro-levels, 
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as between global structural and local be-
havioral properties of networks. 

2.3.4 Mixed graph topologies A 
mixed attachment process has a variable 
proportion of random edges. The growth 
in number of random edges generates a 
subgraph that follows random graph evo-
lution of k-components. For real-world 
networks, a higher proportion of random 
ties, averaging over graphs with other at-
tachment processes, translates to a higher 
probability of a single dominating hierar-
chy of large k-components. This largest 
cohesive hierarchy of a network with a 
high proportion of random ties may be-
come a collective, self-organized entity. 
To the extent that fields have fewer con-
straints than organizations, and more at-
tachments that are random, their networks 
will have a greater tendency to form a 
single cohesive hierarchy among the larg-
est k-components and the ‘giant’ con-
nected component will tend to span the 
network when the number of edges ex-
ceeds the number of nodes. These proper-
ties of random graphs provide the motiva-
tion for defining a network topology of 
‘mono-cones’ (§3.1) that contrasts with 
what is expected in the case of degree-
biased graphs. In the mixed attachment 
probability model, networks are gener-
ated where if A ≈ 0 the expected expo-
nent α of the power-law degree distribu-
tion approaches 3 asymptotically from 
below as N goes to infinity (Barabási 
2003; proven by Bollobás and Riordan 
2003) but as A > 0 grows larger, α de-
creases. 

2.3.5 Degree-biased graph topolo-
gies Barabási (2002, 2003) popularized 
preferential attachment to degree as a dy-
namic model for large networks. A de-
gree distribution is said to follow a power 
law if the probability of having k 
neighbors is approximated by p(k) ~ k -α. 
The exponent α is estimated as the linear 

slope in a scatterplot with log k (number 
of neighbors) on the x axis and log Nk 
(number of nodes with k neighbors) on 
the y axis. Degree-biased graphs generate 
histograms of degree frequency that fol-
low a power-law, where the ‘fat tails’ of 
the distribution correspond to network 
‘hubs’ with degree frequencies orders of 
magnitude larger than expected in a ran-
dom graph with the same mean degree. In 
degree-biased graphs the common sets of 
nodes attached to multiple hubs tend to 
form larger multiple overlapping cohe-
sive hierarchies. Only when the power-
law exponent is in the range 2 – 2.3 do 
the hubs tend to connect to form a single 
cohesive hierarchy (Adamic et al. 2003). 
White and Johansen (2004) found that the 
degree-biased graphs with power-law ex-
ponents between 2 – 3 listed by Barabási 
(2003) tend to have exponents in the 2 – 
2.3 range once those with broken-scale 
slopes are removed (e.g., different expo-
nents for English word co-occurrences for 
high- vs. low- frequency words). This 
may indicate selective biases in the real-
world evolution of networks. These net-
works, within the 2 – 2.3 range, are also 
orders of magnitude larger on average 
than those with exponents between 1 and 
2, which are expected to have ‘multi-
cone’ typologies (§2.4).  

2.3.6 Locally-biased attachments  
Mixed probability models may also 

include local attachment biases (Rapoport 
1957) such as reciprocity, transitivity, or 
co-parent/co-child biases (two nodes with 
directed links to the same other having a 
tendency to attach). Evidence of such bi-
ases can be derived from a triad census 
(Batagelj and Mrvar 2001, Davis and 
Leinhardt 1972). Locally-biased attach-
ments are ever-present within organiza-
tional networks, and mixes involving 
pervasive locally-biased attachments 
along with random and degree biases 
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commonly inflect degree distributions 
away from power-law distributions or 
lower the exponent, thereby altering the 
global network topology. 

2.3.7 Assortative mixing attach-
ments  

Another potential micro-macro link-
age for network structure derives from 
the extent to which degree values corre-
late over edges, i.e., assortative or disas-
sortative mixing by degree. Characteristic 
negative or positive degree correlations, 
according to Newman and Park (2003), 
are one of the more significant distinc-
tions between social and nonsocial net-
works. They contrast assortative mixing 
in social networks, enabling community 
formation, with the disassortative mixing 
common to technological and biological 
networks, where high-degree nodes have 
a higher probability of attaching to nodes 
of low degree (Maslov et al. 2002; 
Amaral et al. 2000). In assortative mix-
ing, in contrast, nodes with higher degree 
have higher probability of connecting to 
other nodes of higher degree, controlling 
for expected probabilities given the nodal 
degree distribution. The topological in-
flection expected from positive degree 
correlations (assortative mixing) is to-
wards a single large ‘mono-cone’ cohe-
sive hierarchy.  

2.3.8 Arbitrary degree-distribution 
biases and the study of searchability 

Newman’s (et al., 2001) generating 
function method allows the simulation 
and measurement of the size and distribu-
tion of k-components for a random graph 
with the same degree distribution as an 
empirical graph, and provides Monte-
Carlo models for “expected topologies” 
of networks with the observed degree dis-
tribution. Adamic et al. (2003) used this 
method to discover that among networks 
with power-law degree distributions, only 
those with exponents in the range 2 to 2.3 

had a cohesive topology that allows 
searchability: the capacity to move 
through successive hubs in connected lo-
cal neighborhoods to find an arbitrary 
target in orders of magnitude fewer 
moves than required in a random search 
(Kleinberg 2000).  

 
3. Definitions for Types of 
Cohesive Topologies 

 
3.1 Definitions, 1 Recall that a k-

component is maximal if no superset has 
connectivity k. The breadth of a k-
component (see §2.2) is |Nk|, the number 
of nodes in its node set Nk, and its depth 
is indexed by its cohesion contour level k. 
A cohesive cone of a graph G is a maxi-
mal set of nested k-components of G (i.e., 
in which every K1,K2 pair of distinct k-
components for which K1 is of equal or 
lesser depth than K2 is ordered by set in-
clusion of its node sets, NK1 C NK2). The 
depth h of a cone is the largest contour 
number of its k-components and is 
uniquely defined because they are fully 
ordered from 1 to h. A mono-cone of G is 
a cone with no nodes in common with 
other cones in G. No cone can have a sin-
gle node at its greatest connectivity h. 
There are always 3 or more cyclically-
connected nodes at this connectivity since 
cones by definition have a cohesive sub-
set of connectivity 2 or more.  

Cones thus lend themselves to think-
ing of cohesion as a collective phenome-
non, not a matter of inequalities between 
individual nodes. Further, network hubs 
with a degree k that is higher than their 
greatest contour c in a cone will have only 
the cohesion c < k of their highest cohe-
sive contour.  

The ‘depth’ of connectivity for actors 
in a cohesive cone nicely captures the in-
tuitive sense of being involved in rela-
tions that are structurally embedded in a 
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social network, in direct contrast to 
“arms-length” connections (Uzzi 1996). 
As such, one aspect of structural em-
beddedness – the depth of involvement in 
a cohesive structure – is captured by the 
nesting of individuals, groups, or organi-
zations in k-components. 

Nested cohesive hierarchies, as in 
§2.3.3, offer one possible outcome of 
network evolution. A second type of out-
come, one of dispersion and overlap 
among cohesive clusters, might co-evolve 
with non-equiprobable attachments of ac-
tors or organizations, as in degree-biased 
or mixed-bias graphs (§2.3.4-5). The con-
tour level of a node is the largest k for a 
k-component of which it is a member. 

Theorems in graphical evolution 
commonly deduce findings about con-
cepts that are looser than most mathe-
matical definitions, such as deriving 
properties of ‘almost all graphs.’ In this 
vein, we define a graph G with a mono-
cone (macro) topology as one in which 
the mono-cone of greatest depth has k-
components that are orders of magnitude 
broader than those of similar depth k for 
other mono-cones in G. 

3.2 Definitions, 2 A multi-cone of a 
graph G is a set of cones of G, each hav-
ing nodes in common with others in the 
set. G has a multi-cone (macro) topology 
if its largest multi-cone has multiple inter-
secting cones with k-components at simi-
lar depths and with similar orders of mag-
nitude in breadth, and if its k-components 
are deeper or, if of similar depth, orders 
of magnitude broader than those of the 
mono-cones in G. 

Analysis in terms of multi-cones dif-
fers from many density-driven approaches 
to cohesion and clustering. The minimal 
density for a k-component with n nodes is 
k/(n-1), so it is possible to have various 
types of “structural holes” (Burt 1992) 
within k-components and within circles of 

intersecting k-components. Such circles, 
however, cannot involve k-1 nodes in 
each intersection because the ensemble 
would then be a single k-component 
rather than a set of distinct k-components. 
This constraint can produce some interest-
ing asymmetries in organizational net-
works.  

The definition of a multi-cone topol-
ogy allows multiple disconnected multi-
cones with diverse k-component proper-
ties. Thus, a third type of outcome of 
network evolution is one of non-overlap 
among multiple cohesive clusters. Be-
cause discrete mono-cones are at most 1-
connected, we do not discuss them here 
because they comprise a non-cohesive 
network topology, and such networks lack 
the field or organizational properties we 
associate with cohesion. 

 
4. CASE STUDIES  
 
We have chosen three examples to 

provide a contrast set that includes: (1) 
large and small networks; (2) 1- and 2- 
mode networks; (3) exact and approxi-
mate calculation of cohesive embeddings; 
(4) different mixes of organizational and 
field properties and of organizations 
within fields; (5) examples of the contrast 
between k-components and other cohe-
sively embedded subsets; and (6) greater 
and lesser tendencies towards degree-bias 
or randomness in attachments. We first 
discuss each case in some detail and then 
present a proposition relating to our 
broader interest in the cohesive characters 
of organizations and fields and to the 
properties of the example. 

4.1. Case 1: Cohesive Hierarchy in 
Davis’s Southern Women Events Net-
work 

We examine data collected on 
women’s attendance at society-page 
events in a nine-month period during the 
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The concentric solid-line contours 
around sets of nodes are labeled for the 
successive k-components of the graph: 
Fourteen women and nine events are in 
the 4-component; fifteen women and thir-
teen events in the 3-component; and the 
network as a whole is biconnected (a bi-
component). The women who share 
membership in more cohesive k-
components of the mono-cone represent 
the more embedded structural collectives. 
Thus relations among Helen, Laura, and 
Theresa in Figure 1, for instance, have 
more deeply embedded connections with 
one another than with Olivia, Flora or 
Dorothy. 

1930s. The data derive from a sociologi-
cal study conducted in a town of the deep 
South. The network illustrates a number 
of points about cohesion. First, although a 
similar analysis could be done of social 
relationships among individuals (a 1-
mode network), this example shows how 
cohesion analysis is equally appropriate to 
a bipartite (2-mode) network of actors. 
The concept of cohesion is applicable 
here to the relationships among the 
women, among the events, and within the 
ensemble of women-and-events. Second, 
it is a network with a temporal dynamic 
since the events are ordered in time. 
Third, it illustrates a mono-cone topology, 
and how any k-component with k > 1 is 
necessarily also cohesive at level k-1. 
Fourth, it displays the difference between 
k-components proper and other embedded 
subsets within the deepest k-component 
of a cone. Fifth, since these data have 
been analyzed repeatedly, our results may 
be compared with studies that use differ-
ent tools for network analysis. For this 
comparison, the reader should consult 
Freeman’s (2003) meta-analysis of all 
previous studies of the Southern 
women/events network.  

The tree-like structure to the right of 
Figure 1 displays the results of the 
Moody-White algorithm (except for cuts 
that separate single nodes) as it searches 
for every k-component and structural em-
bedding in the graph. It identifies the suc-
cessively more cohesive k-components 
labeled k=2 through k=4. The 1- and 2- 
components completely overlap and con-
tain nested three and four components. As 
graph fragments are pared away to locate 
these structures, once the most cohesive 
component is identified, the algorithm 
proceeds to split this 4-component into 
the only two subsets that can be separated 
by removal of four events (cutsets of size 
4, or 4-cuts), and then to analyze cohesion 
when each of these two subsets is consid-
ered on their own. These further levels of 
structural embeddedness are demarcated 
in Figure 1 by the concentric regions en-
closed by dashed lines within the 4-
component. 

Figure 1 derives from the attendance 
matrix recorded by Davis, Gardner and 
Gardner (1941:148). Women are shown 
as darker nodes with first names, and 
events as lighter nodes with numbers in 
their interior. The larger-sized numbers 
attached to events, 1 to 14, give the tem-
poral sequence. The scaling of nodes is a 
spring-embedding that pulls nodes to-
gether when they are attached and pushes 
them apart when they are not attached. 
Spring-embedding is consistent with the 
idea of scaling-by-cohesion, whereas a 
spatial scaling such as correspondence 
analysis puts nodes together when they 
have the same attachments even if they 
are not connected. 

Cohesive embeddings within k-
components are not unique when found 
by removal of k nodes, which is the last 
step in the Moody-White algorithm. Find-
ing multiple overlapping sets, however, 
can again be a useful result. There are two 
such 4-cuts within the Southern women 4-
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component: One removes four central 
events to separate two opposing clusters 
of structurally embedded women and 
events, and the other removes three of 
these central events plus one woman to 
give a slightly different result as to the 
placement of this woman (Nora) in defin-
ing boundaries between the opposing 
clusters. These divisions agree in the main 
with the findings of other methods, but 
also display a basis for the variability that 
we find in comparing their results (Free-
man 2003). The 4-cuts for the broadest 
structurally embedded clusters divide into 
three sets: (A) events 1-5 (or 1-6) (occur-
ring in temporal order 2, 5, 7, 11 and 12) 
and the women who attended them; (B) 
events 10-14 (occurring in order 4, 8, 13, 
14) and the women who attended them 
(C) the cut-set of events 6-9 (or 7-9) that 
include some women from the both clus-
ters.  

By keeping the bipartite network in-
tact, the structural cohesion approach is 
able to simultaneously model the full or-
dering of k-components, the partial order-
ing of cohesively embedded sets, and the 
temporal ordering of events. Event dy-
namics may be viewed at 
http://eclectic.ss.uci.edu/~drwhite/dynami
cs/DavisTime002.htm for a series of 14 
slides, one for each event in the time-
series. Viewed dynamically, the transi-
tions among events move between sets 
(C-A-B-C-A-B-A-C-B-A) for the first 
nine transitions but not the last four (B-B-
A-A-C-C; p=.03), showing a dynamic 
with a mix of randomness and repetitive 
sequencing that alternates between com-
petitive and integrative events.  

4.2. Implications of Mono-Cone   
Topology (Proposition 1):  
Networks as Fields. Based on the 

probability models in §2.3, we expect 
networks to be more likely to represent 
fields when they have a mono-cone cohe-

sive topology or single stacked multicon-
nectivity hierarchy. Some of the processes 
that contribute to mono-cone cohesive to-
pologies are random attachments (§2.3.2), 
locally-biased attachments (§2.3.6), de-
gree-biased (§2.3.5) and mixed (§2.3.4) 
attachments with power-law exponents on 
degree distributions between 2 – 2.3, and 
assortative mixing (§2.3.7). Our case 3 
(§4.5) will exemplify the last two proper-
ties plus attachment bias to cohesion. De-
gree-biased and mixed attachments with 
exponents less than 2 (§2.3.4-2.3.5) will 
tend to produce multi-cone topologies. 

The Southern women network in Fig-
ure 1 illustrates the nested structure of co-
hesion in a mono-cone topology. While 
small, the Southern women’s network is a 
good example of a field. There is organi-
zation here, but it is informal and emer-
gent, with clustered sets of women orga-
nizing different events and inviting mem-
bers of their clusters or larger community, 
and some invitees attending and some not 
at each level. Within each of the most 
deeply embedded sets of women who as-
sociated in opposing event-sets, individ-
ual records of attendance are highly vari-
able: Freeman and White (1993) show 
with a lattice representation the near-
random intersections of attendees within 
each cluster. Still, the latent organiza-
tional tendencies in the oppositional struc-
tural embeddings within the 4-component 
indicate informal organization into sub-
groups (somewhat like multi-cones hav-
ing a common 4-cohesive contour). The 
timing of which of these two latent groups 
sponsor which of the events, however, is 
irregular, even if turn-taking or competi-
tion is involved in the dynamics. 

4.3. Case 2: Visualizing Multi-Cone 
Topologies in a Large Network  
 
We move next to the case of a social 

science co-authorship network, with a 
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particular focus on the largest bicompo-
nent (N=29,462 authors) of papers listed 
in Sociological Abstracts from 1963 - 
1999. Because computation of k-
components in large networks is prohibi-
tively time consuming, we map cohesive 
contours using an approximation tech-
nique developed by Moody (2004). His 
results in Figure 2 show a multi-cone 
structure.  

(Insert Figure 2 about here) 
Figure 2 shows the 3 d and 2 d results 

of Moody’s procedure for large networks 
that finds approximate cohesive contour 
plots instead of computing k-components 
directly. He built on the fact that a force-
directed graph or spring-embedding algo-
rithm will draw nodes near one another 
with force proportional to their cohesion 
and push them apart the lower their cohe-
sion. He calculated the number of nodes 
within xy squares of constant areas in the 
spring-embedder scaling of the network 
and then plotted a smooth probability 
density function (bivariate kernal density) 
over the squares in the xy surface. This 
approximation procedure maps relative 
contours, some of which wrap around 
multiple cohesive cones (shown as peaks 
in Figure 2) and allows estimation of a 
structural embedding variable that varies 
by node according to the density of the xy 
square where it is located. Two clear 
peaks appear in the relative contour plot, 
one significantly taller than the other. The 
major peak corresponds to people writing 
in general sociology, while the shorter 
peak corresponds to people writing 
largely on topics related to public health. 
The 2 d contours show two distinct cones 
above contour 2.74 (one with two sub-
cones with slight rises in contour at the 
depression) and a contour at 2.11 in the 3 
d image that wraps around both the larger 
peaks as well as the lower cones.  

Organizational networks need not be 

small in size, and co-authorship networks, 
by virtue of the distinctions imposed by 
the formal architecture of sub-disciplines, 
focused specialty journals and training 
programs, may be taken to represent 
structural mid-points between organiza-
tional networks and more open fields that 
tend toward mono-cone cohesion. The 
plots for this network show a multi-cone 
topology, consistent with the probability 
models that we expect to apply to organ-
izational networks (§2.3.6 and 4.4, be-
low). 

4.4. Implications of Multi-Cone Topology 
(Proposition 2):  

Organizational Networks. Organizations 
tend to impose boundaries between differenti-
ated subgroups in their division of labor. 
Within organizations we expect multiple over-
lapping cohesive groups (and thus multi-cones 
topologies) that result from the segmentation 
and networking of individuals and groups un-
der the constraints of interdependent activities 
and formal lines of supervisory authority and 
regulation. This proposition corresponds to the 
idea that organizations have substructures and 
an internal division of labor. We also expect 
the observed multi-cones to overlap and cross-
cut the formal organizational job descriptions. 
Of interest is how overlapping cohesive cones 
integrate the organization, and what are the im-
plications of the overlaps and their sizes com-
pared to those of the intersecting k-
components.  

In terms of micro-macro linkage, the prob-
ability models that generate multi-cone struc-
ture are locally-biased attachments (§2.3.6) and 
degree-biased and mixed attachments and to-
pologies (§2.3.5, 2.3.4) in cases where the 
power-law degree distributions have exponents 
less than 2. Where the exponent exceeds 3 vir-
tually no cohesion is expected in the graph, so 
the expected topology is neither mono-cone nor 
multi-cone. 

Multi-cone topology focuses on over-
laps among cohesive k-components and 
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embeddings. Topological variants in this 
class capture many of the properties asso-
ciated with ideas about social spaces or 
manifolds that form the communicative 
spines of organizations (Friedkin 1998). 
What defines a multi-cone structure is a 
maximal subgraph of k-components in 
which some of the contours around the k-
components embed the contours of multi-
ple cones. These specific multi-cone con-
tours hold together various disjoint struc-
tures of higher multiconnectivity. Multi-
cone contours, or ‘ridges,’ are thus a po-
tentially powerful and predictive feature 
of organizations. When some of the k-
components in these ridge-type structures 
overlap with only a single node in com-
mon, a situation may arise that Likert 
(1961) calls organizational link-pins: 
identified sets of individuals who belong 
uniquely to two distinct cohesive groups 
(e.g., where they might be a supervisor in 
one and supervised in another). Similarly, 
Likert’s model of an organizational short-
circuit is a cohesive group that spans three 
levels of supervisory authority (and over-
laps with other cohesive groups) and can 
be modeled by a combination of cohesive 
groups and supervisory relations. 

4.5. Case 3: Biotechnology Collabora-
tions as a Field of Embedded Networks  

Powell, White, Koput and Owen-
Smith (2004) analyzed the development 
and elaboration of the field of biotechnol-
ogy, showing how the formation, dissolu-
tion, and rewiring of new and repeated 
network ties over a twelve-year period, 
from 1988 to 1999, shaped and reshaped 
the opportunity structure of the field. For 
this network, the idea of a field captures 
the diversity of organizations more aptly 
than any other term, such as industry or 
population. Universities, government 
labs, and nonprofit hospitals and research 
institutes are a critical part of the field; 
while on the commercial side, established 

pharmaceutical firms and dedicated bio-
technology companies are involved in 
bringing new medicines to market. In this 
commercial field of the life sciences, co-
hesive blocks play a major role in the 
network dynamics. We also observed de-
gree-biased power-law distributions 
(§2.3.5) for firms in biotechnology, which 
are typical of networks with preferential 
attachments to degree and a tendency to-
wards the formation of central hubs. Deep 
empirical knowledge of the industry, 
however, led us to question whether this 
power-law tendency was not due to a de-
gree-based attachment bias toward more 
central nodes (§2.3.2) but to a preference 
for access to well-connected but diversely 
affiliated nodes that had the ability to rec-
ognize and access novel information, and 
hence a cohesion-biased attachment proc-
ess.  

Hence, we investigated the hypothesis 
of preferential attachment to structural 
cohesion in the biotech industry. A series 
of network visualizations highlighted both 
the evolving topology of the field and the 
processes by which new ties and organi-
zations were added. We turned to a statis-
tical examination of network formation 
and dissolution, and assessed the effects 
of alternative mechanisms of attachment, 
including rich-get-richer, homophily, fol-
low-the trend, and preference for diver-
sity. One result of the analysis was to 
show that the processes of attachment 
changed as organizations aged and their 
portfolios of connections changed. Micro-
level choices and macro-network trends 
were seen to co-evolve in ways that led to 
shifts in the dominant logics of affiliation. 

Rather than a static structure of hier-
archical cohesion, this science-based field 
has a preference for novelty. The most 
central firms search for new sources of 
innovation on the periphery and pull the 
new entrants into the center. This is an 
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example of the search capability refer-
enced earlier (§2.3.8 [Adamic et al. 
2003]: indeed, the exponent for the 
power-law degree distributions for each 
of the biotech subsectors is within the 2 – 
2.3 range as expected). The most cohesive 
biotech cluster appears to have the widest 
search horizons, while lesser cohesion en-
tails narrower, less multiconnected per-
spectives. The ‘ladder’ structure of the 
mono-cone field represents both an open 
elite (Owen-Smith, Powell, and Koput 
2004), whose members ‘prospect’ for 
likely newcomers throughout the network, 
and a hierarchy that shapes attachment 
preferences and search behavior across 
the field.  

Figure 3, using Moody’s density func-
tion method, captures in the scaling con-
tour the mix of a static element (a cohe-
sive hierarchy) and a dynamic element, 
that of central firms reaching out to the 
perimeter of the network, which shows up 
in the scaling contour as a wave effect: a 
scaling displacement seen in the raised 
cohesive contour of the outer ring around 
the central cone in the figure. This secon-
dary structure is an emergent feature of 
the field created by the Schumpeterian 
dynamic of the innovation ‘pump’ in this 
industry, in which highly cohesive firms 
reach out to form new ties with those on 
the cohesive periphery. Drawn after our 
Powell et al. (2004) analyses were com-
plete, Figure 3 helps to confirm the opera-
tion and structure of this pump independ-
ently of the earlier evidence: Namely, that 
a core feature of the innovation process is 
operating through the field of external 
contracts among firms and the dynamics 
of new-tie formation.  

[Figure 3 here] 
Figure 3, however, largely fits the 

structure of a mono-cone, consistent with 
Proposition 1 in which we argued that 
fields should have a mono-cone structure. 

Part of the reason for this prediction is 
that fields are by definition freer of organ-
izational constraints than organizations 
per se, so that, as with networks in which 
ties form randomly (§2.3.3), cohesion at 
the level of the broader k-components 
tends to cumulate into a single hierarchy. 
In the biotech case, however, there is also 
strong bias, statistically demonstrable, of 
attachment to structural cohesion. We 
might find cases, however, where organ-
izational features of networks character-
ized by multi-cones and ridge-type struc-
tures are emergent within a field at the 
level of both local neighborhoods (regu-
larities in clusters of interactions) and the 
overall network.  

 

4.6. Implications for Multi-Cone 
Topologies (Proposition 3):  

Multi-organizational fields and dif-
ference in scale. If an organization is 
more likely to have a multi-cone topology 
and a field a mono-cone topology, how do 
we conceptualize a multi-organizational 
field with an overall mono-cone topology 
when contained within it are narrower re-
gions of multi-cone organizational net-
works? This is possible because differ-
ences of scale between organizations and 
fields operate at two different levels. This 
is reflected in our ‘looser’ definitions of 
topological structures, which permit the 
interlock of contrasting levels in cohesive 
scale (depth vs. breadth, which relate in-
versely in a single cone) according to 
their relative frequencies. The cohesion of 
an organization is often greater but more 
narrowly distributed than that of fields 
(§1.2), while that of fields may be shal-
lower but broader in the number of nodes 
comprised in each of the smaller organ-
izational networks. To be mono-cone in 
the presence of such smaller organiza-
tional structures within its network, the 
field must have broader k-components 
(i.e., with significantly more nodes) than 
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comparable k-components in the inter-
secting cohesive cones of organizations. 
The cohesive cones within organizations, 
then, will overlap with those of the mono-
cone field to varying degrees.  

In the case of degree-biased network 
topologies (§2.3.5), the presence of many 
smaller organizational structures within 
the network will tend to reduce the expo-
nent of the degree distribution to within 
the range 1 – 2 and to reduce the likeli-
hood that the network will qualify as a 
field. We conjecture that when networks 
with degree-biased network topologies 
have an exponent between 2 and 2.3, 
roughly consistent with the presence of 
cohesion among hubs of the networks, the 
network will qualify as a field.2 

 
5. Discussion and Conclusion 

 
Structural cohesion measures, specifically 
k-components and the cohesive cones in 
which k-components are often embedded, 
provide precise ways to operationalize 
and test the extent to which hierarchically 
nested or overlapping subnetworks char-
acterize a given social field or organiza-

tion within its larger network environ-
ment, and to test hypotheses about the 
consequences of cohesive memberships, 
overlaps, and network topologies. These 
concepts, when cast in terms of network 
topologies, help to link broad organiza-
tional and network theories and proposi-
tions with specific structural measures 
and testable hypotheses such as those of 
Predictive Structural Cohesion theory. At 
the core of PSC theory is, first of all, an 
account of how units with greater cohe-
sion act as transmission amplifiers, as or-
ganizations utilize the redundancies of 
multiple channels to overcome the dis-
tance decay that typically occurs with sin-
gle-path network transmission. Second, 
multi-cone structures help to focus atten-
tion on the interfaces between more cohe-
sive subgroups whose occupants may play 
crucial roles in organizational connec-
tivity, e.g., with respect to supervisory re-
lations, overall communication quality, 
and coordination. Third, they explain how 
reliable transmission at a distance can oc-
cur between distant social positions in an 
organization or a field, via higher levels 
of multiconnectivity operating through in-
tersecting cohesive groups. Fourth, they 
explain how weak or even strong ties can 
occur between nodes or individuals that 
are quite distant, when there is high soli-
darity in terms of perceived agreement 
and acknowledged influence. Multi-cone 
and ridge structures provide a framework 
for accounts of communicative spines of 
organizations that are heavily dependent 
on intermediaries, subgroups, and role po-
sitions in complex interlocking positions, 
and differently configured than mono-
cone cohesive structures.  

                                                 
2 One can speculate that when one organization 
populates the highest k-component of a field the 
shape of the field is likely to change into that of a 
multi-cone as the dominant organization acts to 
reshuffle activities in the field and to restructure 
cohesive ties to form interlocked and supervised 
subgroups. Case 2 might represent outcome of 
this process if we consider the American Socio-
logical Association as the organization that gov-
erns the division of publications among journals. 
Attachment biases to cohesion per se, such as we 
find in the biotech industry, may also prevent or-
ganizational monopolies over the cohesive core of 
an entire field. Because in the biotech study or-
ganizations (and their internal networks) were col-
lapsed into single nodes the problem addressed in 
proposition 3 did not arise directly but resurfaced 
as we observed new organizational forms emerge 
out of inter-organizational relations, as corpora-
tions merged and split, bought one another out, 
and formed long-term strategic alliances. 

We argued for extending PSC theory 
to identify the network footprints of fields 
and organizations as distinct but inter-
locking concepts, and to study how or-
ganizations may gain the benefits of inte-
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gration into larger fields through overlaps 
and ‘contours’ of cohesion. Our goal here 
was to develop additional analytic vo-
cabulary for the study of cohesive topolo-
gies in networks of fields and organiza-
tions and to demonstrate the utility of 
these concepts with examples from net-
work studies. Our contrasting definitions 
of fields and organizations take into ac-
count that real world empirical networks 
mix elements from both levels of observa-
tion, just as different probabilistic biases 
are found in mixed rather than pure form 
(§2.3), and cones with different breadth 
and depth measures of cohesion may be 
found in different mixes. Our arguments 
and explanations are oriented towards 
identifying a class of strong micro-macro 
linkages between the behavior of agents 
in a network context and the network to-
pology that their behavior generates (there 
are of course many other micro-macro 
links not discussed here where network 
processes generate one form of topology 
or another, see for example: Johnsen 
1985, Snijders 2001, Robins, Woolcock 
and Pattison, in press, White and 
Johansen 2004, introduction). Behavior 
re-tunes in turn to exploit or explore al-
terations in network structure and per-
ceived dynamics, and the micro-macro 
feedback process is recursive. 

In introducing the concept of field, we 
observed that fields are conceived as hav-
ing fewer constraints on interactions than 
organizations, and we argued from prob-
abilistic models to explain our prediction 
of the tendency for broad mono-cones to 
occur in fields as a product of interactions 
that occur at random and are less struc-
tured purely local attachment bias or by 
degree or ‘popularity’ biases that fall 
within certain ranges defined by the ex-
ponent associated with such biases 
(§2.3.4, 2.3.8). When organizations build 
heavy degree-biases into their interac-

tions, the micro-macro linkages of prob-
ability models (§2.3.5) map these biases 
into greater likelihoods of multi-cone 
network topologies, for example, when 
the exponent of the power-law degree dis-
tribution is between 2.3 and 3. This is be-
cause these degree distributions entail the 
creation of cohesive subsets that emerge 
out of overlaps of sizeable sets of nodes 
that have different sets of hubs in com-
mon but the hubs tend to be disconnected 
among themselves (Adamic et al. 2003). 
In contrast, hubs tend to be connected and 
contribute to formation of a mono-cone 
field topology when such exponents scale  
between 2 and 2.3, but when they fall be-
low 2 the topology that is generated tends 
once again to be multi-cone because of 
cohesive clusters dominated by local 
rather than global hubs. While recogniz-
ing the importance of power-law distribu-
tions by degree (Barabási 2003), however, 
many other attachment mechanisms may 
drive network evolution.  

Using the properties of cohesive net-
work topologies, as in our examples, we 
are better able to learn how to predict so-
cial phenomena such as behavior in and 
evolution of organizations, tie formation 
in networks, and the dynamics of fields. 
Our micro-macro propositions one (§4.2) 
and two (§4.4), backed by probabilistic 
models, predict connections between or-
ganizational processes structured by for-
mal goals and/or designs and multi-cone 
network topologies, while field-level 
processes that are less constrained benefit 
from mono-cone network topologies that 
emerge from more fluid interactions. 
These propositions offer the beginnings 
of a more general theoretical base (with 
transferable measurability of cohesive 
structures) for understanding how micro-
behavior and local network topology 
connect to the macro-topology of net-
works, and for understanding the dynam-
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ics and feedback loops between the two. 
Proposition three (§4.6) shows how 
mono- and multi-cone topologies may in-
terlock as fields and organizations 
through differences in two complemen-
tary types of scale, one in breadth of 
membership of a cohesive set and the 
other in depth of cohesive embedding. 
Within a single cone these vary inversely, 
and deep but narrow (and segmented) or-
ganizational cohesion is compatible with 
the broader but shallower cohesion of a 
field. 

A theory of multi-cone structures in 
organizations fits into the general class of 
neighborhood-based network processes 
that are applicable to the study of markets, 
competition, and organizational fields and 
communities whose global structure 
emerges from local processes. When am-
plified by cohesion arguments, multi-cone 
structures provide a powerful model of in-
formation flows and social influence in 
organizations and fields be they informal 
or formal. Friedkin’s (1998) work estab-
lishes that multiconnectivity has major ef-
fects, for example, on interpersonal influ-
ence.  

Mono-cone field processes appear 
simpler by comparison to those of multi-
cone structures, but when studied dy-
namically, as in our biotechnology exam-
ple, they also illustrate complex internal 
processes. The mono-cone structure of 
biotechnology is one where flexible and 
shifting ties span the field and create the 
type of single hierarchically-embedded 
cohesive structure that is documented in 
our examples in Figures 1 and 3. Cohe-
sion acts in this field as a radar screen for 
searching for prospective partners, a lad-
der for successive attachments, and a 
source of collaborative resources. 

In sum, cohesive hierarchies of dif-
ferent sorts have especially useful and 
predictive topologies. We have defined 

and illustrated the two basic forms of co-
hesive topologies, mono-cone hierarchies 
and multi-cone ridge structures. By iden-
tifying the organizational and field as-
pects of networks and their micro-macro 
linkages, we may be in a better position to 
develop a network basis for organizational 
theory that is sensitive not only to the in-
ternal networks of organizations but also 
to variations in the type and intensity of 
network linkages into the fields in which 
they are embedded. 
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Figure 1: A hierarchy of nested k-components (4-cone), with cohesive contours 
 

 

Moody-White (2003) algorithm 
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Key: The k-components identified by the Moody-White (2003) algorithm within the bi-
partite graph of events and actors in events are enclosed in solid-line cohesive contours 
and labeled k=2, 3 and 4. The larger numbers 1-14 give the temporal order of events. The 
branching tree at right shows the order in which the algorithm finds first the k-
components (again labeled k=2, 3 and 4) and then the remaining embedded subsets that 
remain following removal of four central events within the 4-component. The dotted lines 
in the graph separate the 1- and 2-components identified at steps 5 and 7 by the algorithm, 
and the 1-, 2-, and 3-components identified at steps 6, 8 and 9. These sets are separated 
out within the 4-component by the dashed lines for subsets on opposite sides of the 4-
component split. The only other four node 4-component split (also found by the algorithm 
but not shown) places temporal event 6 in the lower-left embedded set and removes Nora 
from the upper-right embedded set.  
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Figure 2. Social Science Coauthorship Network 
Largest Bicomponent (n=29,462) 

  
 
Figure 3. Density Estimates for the field of biotechnology 
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Note: X and Y positions represent node placements resulting from Fruchterman-Reingold optimization  
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